Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

An annotated bibliography is a list of citations to books, articles, and documents. Each citation is followed by a brief (usually about 150 words) descriptive and evaluative paragraph, the annotation. The purpose of the annotation is to inform the reader of the relevance, accuracy, and quality of the sources cited. Cornell University Library

Contributors: Please consider adding entries to this annotated bibliography (AB) as you read and research articles. This AB will serve as a reference for papers and presentations we collaborate on together and as individuals. APA style.

...

Allen, D., Berg, C., Davidson, S., Noval, M., & Potts, J. (2019, May). International policy coordination for blockchain supply chains. Asia & the Pacific Policy Studies, https://doi.org/10.1002/app5.281 | Full text

This document begins by introducing the historical evolution of global trade, and the developments of the standardized shipping container and global trade coordinating bodies. Authors point out that these occurrences allowed economical trade progression to occur, and explain how this supported trade cost reductions, as their implementations were directly correlated with reduced transportation costs and regulatory costs.  It is then illustrated that information costs are a current hindrance to favorable trade costs, and that blockchain technology could resolve the issue.

...

Christidis, K., Devetsikotis, M.  (2016 May). Blockchains and Smart Contracts for the Internet of ThingsIEEE Accesshttps://ieeexplore.ieee.org/abstract/document/7467408 | Full Text

This paper starts off with one of the better high-level overviews of blockchain technology that I have read. The authors provide a great explanation of the basics around networking, protocols, smart contracts, and more. Following this overview, they discuss the benefits and challenges of using blockchain alongside IoT technology.  A few real-world examples are discussed such as Slock.it, a company that allows users to control access to a smart lock by paying in Ether. The last section of the paper discusses some important deployment considerations that any administers of a blockchain network should consider.

...

Junis, F., Prasteya, F.M.W., Lubay, F.I., & Sari, A.K. (2019 June). A revisit on blockchain-based smart contract technology. https://arxiv.org/ftp/arxiv/papers/1907/1907.09199.pdf | Full text 

Authors open their discussion by explaining that blockchain has grown from digital currency to smart contract utilization by a wide range scope of industries. It is then brought to light that, with this change, there is an issue of blockchain smart contract research not being collocated for concentrated review by experts, and it is proclaimed that this document will explore research gap issues related to this.   

...

With good demonstrations and graphics, this document will assist people in deciding what resources and what parts of a system to place in blockchain and what parts do not need to be.  By providing the actual scenarios, it gives good examples of strong and weak systems that can be used.

WangSiris, X., Yang, WV.A., NoorDimopoulos, SD., ChenFotiou, CN., GuoVoulgaris, MS., & van DamPolyzos, KG.HC. (2019 May). Blockchain-based Interledger smart contract for energy demand management. Energy Procedia, 158, 2719-2724. Retrieved from contracts for decentralized authorization to constrained things. https://wwwarxiv.sciencedirect.com/org/abs/1905.01671 | Full text

After discussing various negative tradeoff issues concerning the offloading of blockchain smart contract authorization from constrained Internet of Thing (IoT) devices to a single authorization server (i.e. execution costs, delays, data reduction), authors state their ambition of presenting designs that more effectively perform this task instead utilizing multiple authorization servers (AS). The stated intention for resolving these tradeoffs is to exemplify constrained IoT device interconnection using a decentralized authorization method with multiple blockchains that constitute two interledger mechanisms.

The level of deliberation appears to be meant for those that have already obtained intermediate to advanced knowledge of blockchain, smart contracts, and constrained IoT devices.  However, with some additional research, a reader with novice awareness of these subjects would be able to follow and learn more about the aspects of the presented issue.  Further, despite a compelling presentation and references listed at the end of the writing, my attention was drawn to the lack of cited sources listed in the article.  This absence was initially noted upon reading the Introduction section, which proposed claims of high computation costs, transaction fees, and delays that occur with the utilization of Ethereum as Bitcoin. 

I did find the report to be educational as to the various processes involved while implementing blockchain smart contracts in conjunction with constrained IoT devices.  What’s more, is I have been persuaded that experimenting with the interconnection of multiple blockchains to improve smart contract efficiency is a worthy pursuit.   

Wang, X., Yang, W., Noor, S., Chen, C., Guo, M., & van Dam, K.H. (2019). Blockchain-based smart contract for energy demand management. Energy Procedia, 158, 2719-2724. Retrieved from https://www.sciencedirect.com/science/article/pii/S1876610219311063

...

Zakhary, V., Agrawal, D., & El Abbadi, A. (2019 September). Transactional smart contracts in blockchain systems. https://arxiv.org/abs/1909.06494v1 | Full text 

By detailing the incongruities within smart contract programming efforts, authors introduce the concept of the Transactional Smart Contract (TXSC) framework as a resolution. Issues of concurrency control and isolation anomalies are defined in the paper concerning the two circumstantial blockchain occurrences of Single Domain Transactional Functions (SDTF) and Cross-Domain Distributed Transactional Functions (CDTF).    

...

Liu, X., Muhammad, K., Lloret, J., Chen, Y., Yuan, S. (2019). Elastic and cost-effective carrier architecture for smart contract in blockchain. Future Generation Computer Systems, 100, 590-599. https://doi.org/10.1016/j.future.2019.05.042

Full text

Siris, V.A., Dimopoulos, D., Fotiou, N., Voulgaris, S., & Polyzos, G.C. (2019 May). Interledger smart contracts for decentralized authorization to constrained things. https://arxiv.org/abs/1905.01671

Full text


Additional articles on Interoperability not yet noted in this Confluence page

...