Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

An annotated bibliography is a list of citations to books, articles, and documents. Each citation is followed by a brief (usually about 150 words) descriptive and evaluative paragraph, the annotation. The purpose of the annotation is to inform the reader of the relevance, accuracy, and quality of the sources cited. Cornell University Library

Contributors: Please consider adding entries to this annotated bibliography (AB) as you read and research articles. This AB will serve as a reference for papers and presentations we collaborate on together and as individuals. APA style.

...

Christidis, K., Devetsikotis, M.  (2016 May). Blockchains and Smart Contracts for the Internet of ThingsIEEE Accesshttps://ieeexplore.ieee.org/abstract/document/7467408 | Full Text

This paper starts off with one of the better high-level overviews of blockchain technology that I have read. The authors provide a great explanation of the basics around networking, protocols, smart contracts, and more. Following this overview, they discuss the benefits and challenges of using blockchain alongside IoT technology.  A few real-world examples are discussed such as Slock.it, a company that allows users to control access to a smart lock by paying in Ether. The last section of the paper discusses some important deployment considerations that any administers of a blockchain network should consider.

...

I recommend this article as informative and relevant for rural logistics considerations and challenges.

WangSato, XT., Yang, W., Noor, S., Chen, C., Guo, MHimura, Y., & van Dam, K.HNemoto, J. (2019 January). BlockchainDesign and evaluation of smart-contract-based smart contract for energy demand management. Energy Procedia, 158, 2719-2724. Retrieved from system operations for permissioned blockchain-based systems. https://www.arxiv.org/abs/1901.11249 - Full text

This document is about a possible method for designing smart-contract-based systems and the way they operate.  It is discussed that cross-platform Blockchain is not the best or smoothest possible way of evaluating the contract but instead they utilize what they call in-blockchain and out-blockchain with the out being third parties that have systems designed to detect triggered events.  According to the document, this triggering will allow for a faster response with times as low as 3 seconds.  They determined that this was due to a single system not having to manage all nodes but only parts of the nodes and bringing the information back to where it is required and that with the triggering, it does not rely on human interaction and can be automatically done. 

The information provided in this document seems to have been tested and is not just a theory.  Times and tracking have actual case studies that provided the data which makes them more than just estimates.  The systems that are demonstrated are also reliable in that they do exist in real world scenarios and are also not theory designed systems that may or may not actually work.

With good demonstrations and graphics, this document will assist people in deciding what resources and what parts of a system to place in blockchain and what parts do not need to be.  By providing the actual scenarios, it gives good examples of strong and weak systems that can be used.

Wang, X., Yang, W., Noor, S., Chen, C., Guo, M., & van Dam, K.H. (2019). Blockchain-based smart contract for energy demand management. Energy Procedia, 158, 2719-2724. Retrieved from https://www.sciencedirect.com/science/article/pii/S1876610219311063

...

Macrinici, D., Cartofeanu, C., & Gao, S. (2018 October). Smart contract applications within blockchain technology: a systematic mapping study. Telematics and Informatics, 35, 2337-2354. https://doi.org/10.1016/j.tele.2018.10.004

Full text

Sato, T., Himura, Y., & Nemoto, J. (2019 January). Design and evaluation of smart-contract-based system operations for permissioned blockchain-based systems. https://arxiv.org/abs/1901.11249

Full text

Siris, V.A., Dimopoulos, D., Fotiou, N., Voulgaris, S., & Polyzos, G.C. (2019 May). Interledger smart contracts for decentralized authorization to constrained things. https://arxiv.org/abs/1905.01671

...