An annotated bibliography is a list of citations to books, articles, and documents. Each citation is followed by a brief (usually about 150 words) descriptive and evaluative paragraph, the annotation. The purpose of the annotation is to inform the reader of the relevance, accuracy, and quality of the sources cited. Cornell University Library
Contributors: Please consider adding entries to this annotated bibliography (AB) as you read and research articles. This AB will serve as a reference for papers and presentations we collaborate on together and as individuals. APA style.
...
Christidis, K., Devetsikotis, M. (2016 May). Blockchains and Smart Contracts for the Internet of Things. IEEE Access, https://ieeexplore.ieee.org/abstract/document/7467408 | Full Text
This paper starts off with one of the better high-level overviews of blockchain technology that I have read. The authors provide a great explanation of the basics around networking, protocols, smart contracts, and more. Following this overview, they discuss the benefits and challenges of using blockchain alongside IoT technology. A few real-world examples are discussed such as Slock.it, a company that allows users to control access to a smart lock by paying in Ether. The last section of the paper discusses some important deployment considerations that any administers of a blockchain network should consider.
...
I recommend this article as informative and relevant for rural logistics considerations and challenges.
Wang, YX., BraccialiYang, AW., LiNoor, TS., LiChen, FC., CuiGuo, XM., & Zhao, Mvan Dam, K.H. (2019) Randomness invalidates criminal smart contracts. Information Sciences, 477, 291-301. . Blockchain-based smart contract for energy demand management. Energy Procedia, 158, 2719-2724. Retrieved from https://doiwww.org/10sciencedirect.1016/com/science/article/pii/S1876610219311063
This paper discusses the feasibility of a system of automated trading of power resources utilizing blockchain as the trading medium. The authors present the different electrical demand profiles of residential, commercial and industrial users and propose a game theory model which aligns the goals of all users to reduce their load, thereby saving money. In addition to the demand being requested through the blockchain to the utility provider, they present a case study in which users in a microgrid can make spot-trades based on changing needs on a daily basis.
The authors received financial support for the project through a grant provided by the Ministry of Education Academic Research Fund of Singapore. The authors are very credible on the subject as some of them have several other publications on the same subject matter. The source is neutral in its presentation of both the current stated of blockchain ability to support the ideas presented, as well as the challenges that will be faced. They even note the limitations the current infrastructure that will limit the adoption of the ideas presented.
This source is very helpful because it tackles a subject which is assumed to be best managed by large utilities and governments. It gives a new perspective that the users in a system will best manage demand when given the ability to make choices and save money. The idea of placing smart contracts with demand into an open market to be filled by those that have excess can be helpful in many different projects.
Wang, Y., Bracciali, A., Li, T., Li, F., Cui, X., & Zhao, M. (2019) Randomness invalidates criminal smart contracts. Information Sciences, 477, 291-301. https://doi.org/10.1016/j.ins.2018.10.057
This paper discusses the use of random factors based on PublicLeaks to minimize the ability of those using smart contracts for criminal activities. While it talks of the mitigation of criminal acts via smart contracts it does not give guarantees, but instead looks at them from a risk management viewpoint.
...
Sato, T., Himura, Y., & Nemoto, J. (2019 January). Design and evaluation of smart-contract-based system operations for permissioned blockchain-based systems. https://arxiv.org/abs/1901.11249
Siris, V.A., Dimopoulos, D., Fotiou, N., Voulgaris, S., & Polyzos, G.C. (2019 May). Interledger smart contracts for decentralized authorization to constrained things. https://arxiv.org/abs/1905.01671
Wang, X., Yang, W., Noor, S., Chen, C., Guo, M., & van Dam, K.H. (2019). Blockchain-based smart contract for energy demand management. Energy Procedia, 158, 2719-2724. Retrieved from https://www.sciencedirect.com/science/article/pii/S1876610219311063, V.A., Dimopoulos, D., Fotiou, N., Voulgaris, S., & Polyzos, G.C. (2019 May). Interledger smart contracts for decentralized authorization to constrained things. https://arxiv.org/abs/1905.01671
Wang, Y., Bracciali, A., Li, T., Li, F., Cui, X., & Zhao, M. (2019) Randomness invalidates criminal smart contracts. Information Sciences, 477, 291-301. https://doi.org/10.1016/j.ins.2018.10.057
...