An annotated bibliography is a list of citations to books, articles, and documents. Each citation is followed by a brief (usually about 150 words) descriptive and evaluative paragraph, the annotation. The purpose of the annotation is to inform the reader of the relevance, accuracy, and quality of the sources cited. Cornell University Library
Contributors: Please consider adding entries to this annotated bibliography (AB) as you read and research articles. This AB will serve as a reference for papers and presentations we collaborate on together and as individuals. APA style.
...
Christidis, K., Devetsikotis, M. (2016 May). Blockchains and Smart Contracts for the Internet of Things. IEEE Access, https://ieeexplore.ieee.org/abstract/document/7467408 | Full Text
This paper starts off with one of the better high-level overviews of blockchain technology that I have read. The authors provide a great explanation of the basics around networking, protocols, smart contracts, and more. Following this overview, they discuss the benefits and challenges of using blockchain alongside IoT technology. A few real-world examples are discussed such as Slock.it, a company that allows users to control access to a smart lock by paying in Ether. The last section of the paper discusses some important deployment considerations that any administers of a blockchain network should consider.
...
I would highly recommend this paper to anyone that would like to understand the basics of the underlying technologies that support a blockchain. As far as discussion around blockchain and IoT, the paper was a little sparse. I would recommend it as a good overview of the topic, and perhaps a good resource to find more in-depth papers on blockchain and IoT in the References section.
Junis, F., Prasteya, F.M.W., Lubay, F.I., & Sari, A.K. (2019 June). A revisit on blockchain-based smart contract technology. https://arxiv.org/ftp/arxiv/papers/1907/1907.09199.pdf | Full text
Authors open their discussion by explaining that blockchain has grown from digital currency to smart contract utilization by a wide range scope of industries. It is then brought to light that, with this change, there is an issue of blockchain smart contract research not being collocated for concentrated review by experts, and it is proclaimed that this document will explore research gap issues related to this.
The report delves into a cited example of Nakamoto’s original proposal that the inherent processes of blockchain could be utilized to avoid duplicate digital spending, which then leads into an evaluation of how various entities have begun to utilize this concept within the format of smart contracts. A breakdown ensues of how the related issues of duplication, Sybil-attack, transaction isolation, and immutability are being resolved by blockchain industry leaders.
I liked the way the article followed this by giving referenced examples of the tokenization of real-world assets and virtual assets, which brought together the initial ideas presented before diving into the final sections concerning the analysis of four classes of smart contract issues: codifying, security, privacy, and performance. The paper tied this together at the end with mentions of various researched problem-solving proposals, and a conclusion that demonstrates further comprehensive studies need to occur for blockchain-based smart contract technology to be universally actualized.
It seems to me that this article would be helpful to a wider audience, as ideas are presented simply enough that one could consider the effectiveness and foresee possible issues concerning blockchain use across multiple applications.
Kim, M., Hilton, B., Burks, Z. and Reyes, J., Integrating Blockchain, Smart Contract-Tokens, and IoT to Design a Food Traceability Solution, 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, 2018, pp. 335-340. doi: 10.1109/IEMCON.2018.8615007, https://ieeexplore.ieee.org/document/8615007
...